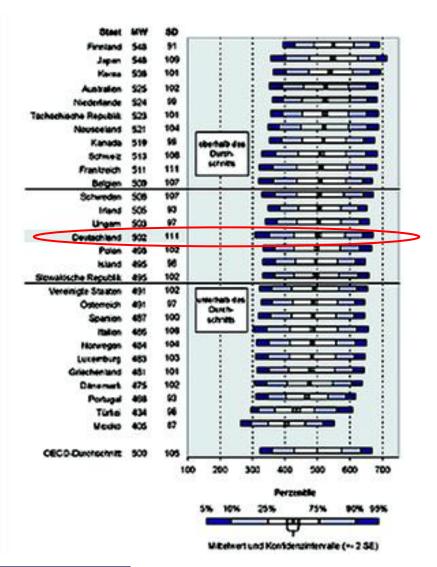


Students Active Learning in Science to Foster Contemporary Scientific Literacy

How to motivate students to learn science and how to assess this

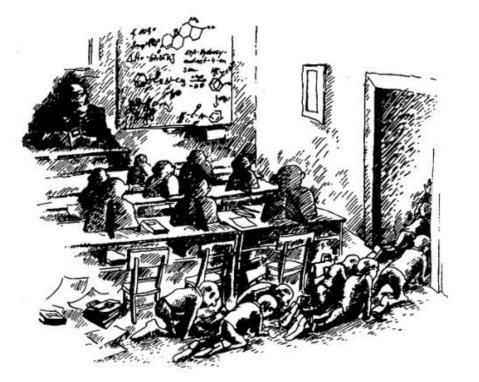
Claus Bolte

SALiS Conference 2012 at Ilia State University Tibilisi (Georgia), August 2012 How to motivate students to learn science and how to assess this


- 1. Introduction
- 2. Model of how to motivate students to learn science The Model of Motivational Learning Environment Instrument (MoLE)
- 3. The MoLE-Instrument to assess students (intrinsic) motivation
- 4. Results from MoLE Research

Introduction: Two Main Problems of the (German) Science Education Practice

Percentilles regarding science competences (internationale scale) of the OECD member countries IPN - IPN-Blätter IV, 2004



Introduction: Two Main Problems of the (German) Science Education Practice

Students' experience with science lessons:

- In science lessons I always ask myself why the hell do I have to learn science?
- In science I am usually not on task and unconcentrated!
- Science is no fun for me at all!
- I really don't understand the concepts and the topics in the science lessons!

Freie Universität

Theoretical based Model of (intrinsic) motivated (Science) Learning

Students' experience with science lessons:

- In science lessons I always ask myself why the hell do I have to learn science?
- In science I am usually not on task and unconcentrated!
- Science is no fun for me at all!
- I really don't understand the concepts and the topics in the science lessons!

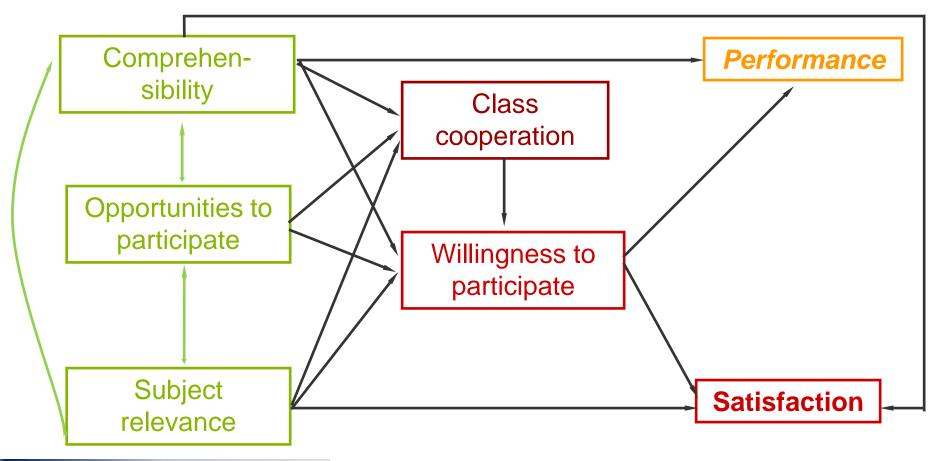
Characteristics of Intrinsic Motivated (Science) Learning:

Personal **Relevance** of the Topic taught in science

Self-intention or Willingness to Participate

- Positive Emotions or Satisfaction
- Cognitive Differentiation, Learning Outcome or **Performance**

(U.Schiefele, Winteler & Krapp 1988; zit. nach Stork 1994, 32).

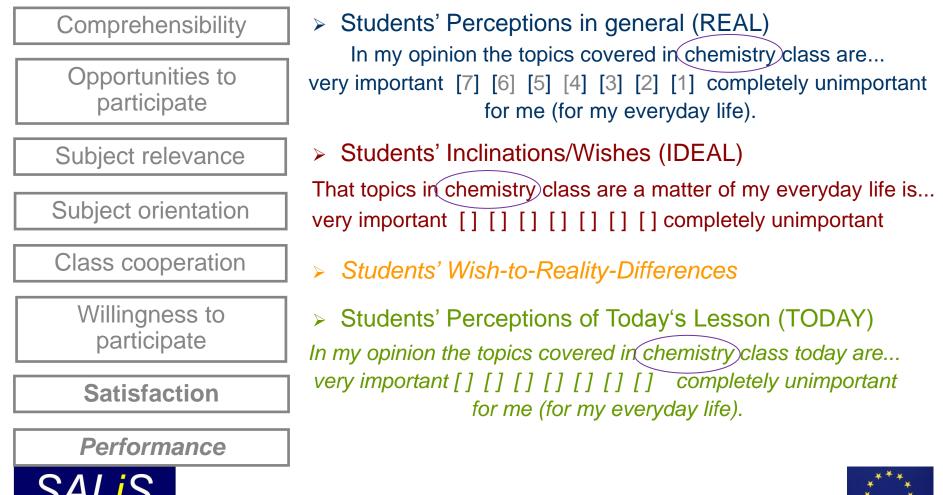


Theoretical based Model of (intrinsic) motivated (Science) Learning

Theoretical Basis:

- Achievement Motivation Theory
- Socio psychology

- Learning and Classroom Climate Research


How to analyse the motivational situation in my science classes? – The MoLE

Freie Universität

7

MoLE-Instruments: Science, Biology, Chemistry and Physics Classes

Different Questionnaire Versions:

Composition of the Sample

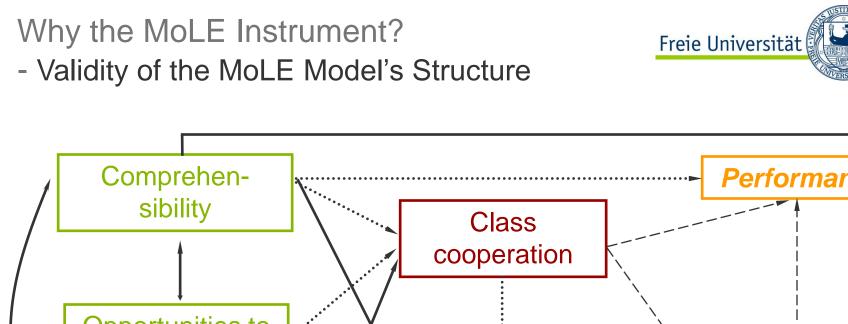
	Boys Sek.I/II	Girls Sek.I/II	total Sek.I/II	Teachers male/female	Total boys/girls/ total	
Chemistry	1101/531	1235/494	2336/1025	93/47	1632/1729/ 3361	
Physics	155/ <i>41</i>	160/ 57	315/ 98	14/5	191/217 /408	
Biology	181/ <i>40</i>	210/ 81	391/ 121	15/8	221/291 /512	
Total	1437/612	1605/632	3042/1244	122/60	1944/2237 /4281	

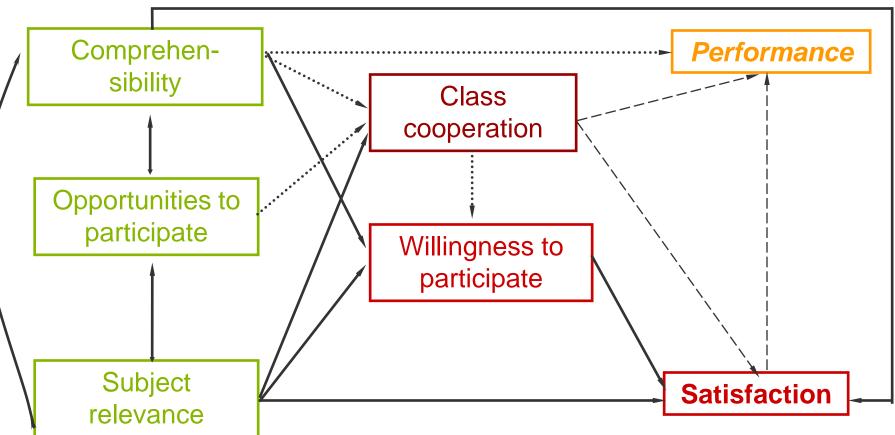
Tab. 1: Sample

Why the MoLE Instrument? – Reliability

Chemistry		Total	Total		Sekundarstufe I			Sekundarstufe II		
MoLE-Indicator	Real	Ideal	WRD	Real	Ideal	WRD	Real	Ideal	WRD	
Satisfaction	.82	.60	.66	.80	.60	.66	.84	.59	.68	
Comprehensibility	.65	.64	.60	.64	.63	.59	.66	.66	.61	
Contents of the Science Subj.	.59	.70	.67	.45	.68	.55	.62	.69	.70	
Subject Relevance	.67	.61	.54	.67	.62	.54	.69	.59	.54	
Opportunities to Participate	.64	.61	.60	.61	.61	.56	.69	.58	.65	
Class Cooperation	.79	.71	.68	.79	.71	.67	.79	.72	.71	
Willingness to Participate	.59	.78	.37	.58	.78	.39	.58	.76	.35	

Tab. 2: Reliability coefficients (Cronbach's a) of the seven MoLE-scalesdemonstrated by the analysis of the data concerning chemistry classes)


Why the MoLE Instrument?


- Validity of Constructs

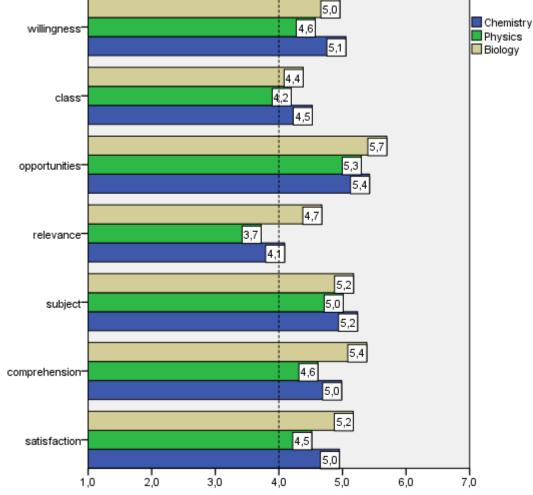
Chemistry		Total			Sekundarstufe I			Sekundarstufe II		
MoLE-Indicator/Item-No.		Real	Ideal	WWD	Real	Ideal	WWD	Real	Ideal	WWD
Satisfaction	1	1/.8	7/.8	1/.8	1/.8	7/.8	1/.8	1/.8	5/.8	3/.8
	2	1/.8	7/.8	1/.8	1/.8	7/.8	1/.8	1/.8	5/.9	3/.8
Comprehensibility/ Requirements	3	7/.6	4/.8	5/.8	7/.6	4/.9	4/.8	1/.7	4/.8	5/.8
	4	7/.9	4/.8	5/.8	7/.9	4/.8	4/.8	7/.9	4/.9	5/.8
Subject orientation	5	5/.8	2/.9	2/.9	5/.8	2/.9	2/.9	5/.8	3/.9	2/.9
	6	5/.8	2/.9	2/.9	5/.8	2/.9	2/.9	5/.9	3/.9	2/.9
Relevance of	7	3/.8	5/.8	6/.8	3/.8	5/.8	6/.8	4/.8	6/.8	6/.8
Subjects	8	3/.9	5/.9	6/.9	3/.9	5/.9	6/.9	4/.9	6/.9	6/.9
Opportunities to	9	4/.8	6/.9	4/.8	4/.8	6/.9	5/.8	3/.8	7/.9	4/.8
Participate	10	4/.8	6/.8	4/.8	4/.8	6/.8	5/.8	3/.8	7/.8	4/.8
Class	11	2/.9	3/.8	3/.9	2/.9	3/.8	3/.8	2/.9	2/.8	1/.9
Cooperation	12	2/.9	3/.9	3/.9	2/.9	3/.8	3/.8	2/.9	2/.9	1/.9
Willingness to	13	6/.9	1/.8	7/.8	6/.9	1/.8	7/.8	6/.9	1/.9	7/.8
Participate	14	6/.7	1/.9	7/.8	6/.7	1/.9	7/.8	6/.7	1/.9	7/.7

Tab. 3: Factor values for the determination of the validity of constructs of the 7MoLE-scales (demonstrated by the analyses of the chemistry classes)

Significant path; expected and identified in all analyses Significant path; expected but only identified in some analyses Significant path; not expected but identified in some analyses

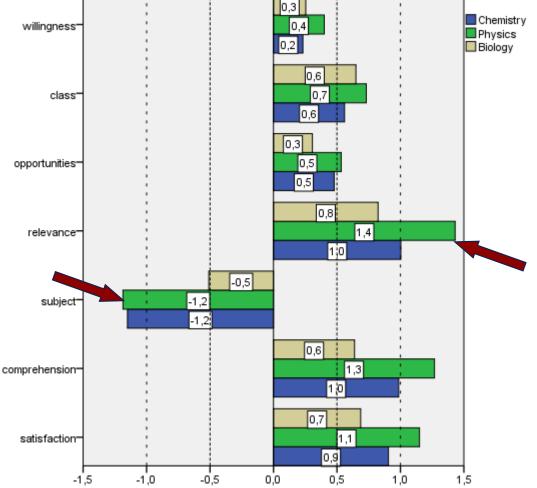
11

How to evaluate Students Gains – the MoLE Students wishes – the IDEAL-Assessments


5,3 Chemistry 5,0 willingnes⁻ Physics 5.3 Biology 5,1 4,9 class* 5,1 6,0 5,9 opportunities= 5,9 5,5 5,2 relevance-5.1 4,7 3,8 subject-6,0 5,9 comprehension-6.0 5,9 5,7 satisfaction= 5,9 2.0 3.0 5.0 4.0 6.0 1.0 7.0

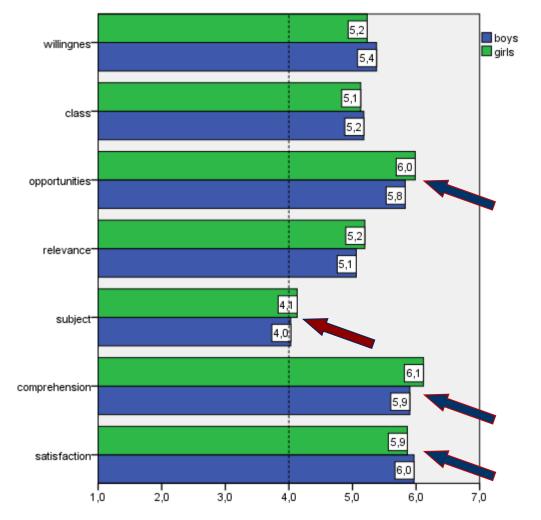
Comparison of the Mean-sores of the estimation of MoLE IDEAL-scales for chemistry, biology, and physics classes - Sek. I

How to evaluate Students Gains – the MoLE Students assessments in general – the REAL-Version

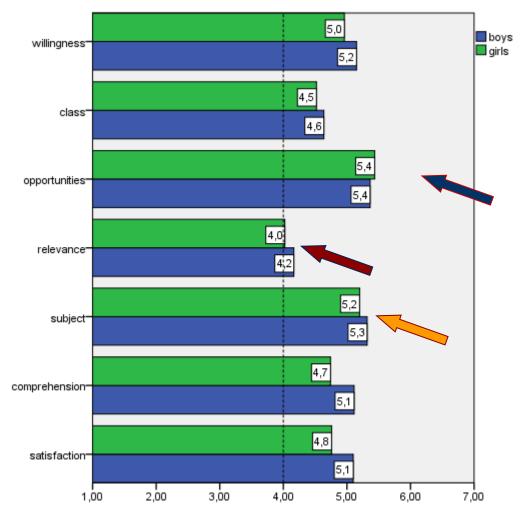


Comparison of the Mean-scores of the MoLE REAL-scales for chemistry, biology, and physics classes - Sek. I

How to evaluate Students Gains – the MoLE Students Wish-to-Reality-Differences

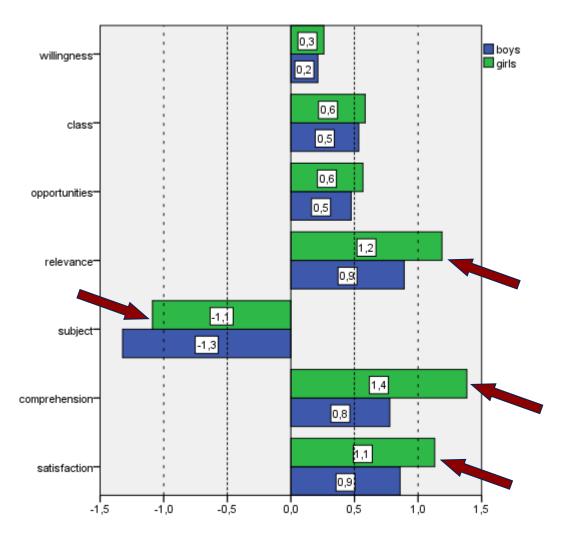


Comparison of the Mean-Wish-to-Reality-Differences for chemistry, biology, and physics classes – Sek. I


How to evaluate Students Gains – the MoLE Students wishes – the IDEAL-Version

Comparison of the Mean-scores of the MoLE IDEAL-scales for chemistry classes - Sek. I

How to evaluate Students Gains – the MoLE Freie Universität Students assessments in general – the REAL-Version



Comparison of the Mean-scores of the MoLE REAL-scales for chemistry classes - Sek. I

How to evaluate Students Gains – the MoLE Students Wish-to-Reality-Differences

Comparison of the (Mean-Wish-to-Reality-Differences for chemistry classes – Sek. I

