

Low-Cost-Techniques for the Science Education Laboratory - An Introduction

Developed by Silvija Markic & Marc Stuckey for the SALiS-project

Content

Why Low-cost experiments?

Different techniques for Low-cost experiments

Why Low-Cost-Experiments?

Low – Cost Eyperiments are useful because ...

- they keep down costs:
 - because a less need of chemical and
 - because of cheap materials for "one time use" from e.g. everyday life, home improvement stores, medical technology
- they need lesser place requirement
- they save time (heating or cooling)
- they offer higher mobility (transport without special needs)
- After compliting the experiments, they are easy for disposal

Low - Cost experiments offer a possibility for inquiry because ...

- of higher safety while using the smaller portions of chemicals (experiments for pupils)
- of a higher mobility (transport without special needs)
- experiment can be use as a home work
- they are easy for disposal

Smaller Portions of Chemicals

Less is more!!!

Method	Portion	
	solid	fluid
Macrotechnology	more than 0,1 g	more than 5 ml
Halfmicro	0,1-0,01 g	5 – 0,5 ml
Micro	0,01-0,001 g	0,5 – 0,05 ml
Ultramicro	less than 0,001 g	less than 0,05 ml

Microscale Experiments

"Microscale Chemistry is a laboratory-based, environmentally safe, pollution-prevention approach accomplished by use in miniature glasseware and significantly reduced amonts of chemicals."

(Singh, Szafran & Pike, 1999, p. 1684)

History of Microscale Experimenting

- Microscale experimenting starts in 1970s at different universities
- Use of microscale experiments also in schools
- In school usually Microscale-Kits

Different Microscale-Kits

- Williamson Kit
- ACE Microscale-Glasware-Kit
- Chem-Pro-System
- Radmaste Microscience System
- Minilabor (German)
- Glasbaukasten nach Baumnach (German)

Radmaste-Kit for Water

Destillation with Minilabor and classical Method

Equipement from the medicine

Cheap alternatives for laboratory equipement from medicine technology

Syringe

Canula

European Commission TEMPUS Student Active Learning in Science

Use of syringe in science experiments Student Active Learning in Science Use of syringe in science experiments

Syringe instead of a burete

Low-cost (left): 1 Euro

Classical (right): more

than 50 Euro

Different seals for different experiments

ONCE

Simple seal Double seal No seal

As gas receiver for fluids

HWS-Softject HSW Normject

Braun Omnifix Braun Inject

More medicine technology

Costs

Syringe

1 ml 100 pieces

2 ml 100 pieces

5 ml 100 pieces

100 pieces 10 ml

100 pieces 20 ml

10,70€ 2,85€

4,20 €

6,20 €

9,40 €

Canula (1,2 / 40)

100 pieces Terumo

5,20€

An example: the Hofmann apparatus

made of syringes and classical

Low Cost: 3 Euro

Classical: 70 Euro

A second example: Producing hydrogen

made of syringes and classical

Low Cost: 1,50 Euro Classical: 200 Euro

ChemZ Kit for Students

- It is possible to buy a kit
- Or more easier:
 Develop your own lowcost experimental kit

Experiments with Petri-Dishes

Cheap alternatives from the lab

- Petri dish (2- or 3- chambered)
- Small ampoule
- Eppendorfcups
- Plastic pipett

An example: electrochemical cell

Making a petri dish and some needles an electrochemical cell

A second example: Daniell cell

made of petri-dish and luminous diode

Or recycling waste for experiments

- Cans
- Glasses
- Pill packagings
- Film containers

An example: Serial dillution with milk

Palette of colors of an indicator

- Use of an indicator from the supermarket: red cabbage.
- Easy to make this indicator byself.
- Use different liquids from the supermarket as acids (e.g. lemon juice) and bases (some drain pipe cleaner)

An example: Microscale-Blower

- 2 mL ampoul is filled with spirit (grain alcohol)
- A piece of handkerchief is rolled in a form of a wick and is 0,5 cm longer then a ampouls
- Such a blower can reach a temperature of 800°C.

A second example: battery

Making a cola can to become a battery

An example: electrochemical cell

Making an electrochemical cell with a film canister, pencil sharpener and a copper paper clip

More Alternatives

Glass with treaded lid

Plastic flask with spray block

"Chemicals" in everyday life

- Food and Products in Supermarket
 - Milk / Cream
 - Spirit
 - Drain pipe cleaner

- Medical products
 - Fizzy tablets
 - Aspirin
 - Ascorbic acid (Vitamin C)

A complete lab?

A lab guide and more examples are available at www.salislab.org

